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Pioneers

Pioneers I

Fourier [1826] studies the properties of
system of linear inequalities, more
complex than system of equations
De la Vallée-Poussin [1911] develops an
iterative procedure for linear minimax
estimation which can be adjusted to solve
linear optimization problems [Farebrother,
2006]
As early as 1930, A.N. Tolstoı described a
number of solution approaches for
transportation problems [Schrijver, 2012]
Kantorovich [1939] proposes rudimentary
algorithm for linear programming applied
to production planning
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Pioneers II
These contributions only come to attention after independent
development of linear programming theory and the Simplex
Method
Other contributions to optimization by mathematicians in the
USSR also went unrecognized elsewhere victim of government
personal and ideological obstacles imposed to international
scientific interchange [Polyak, 2014]
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Pioneers III
A quote from Kantorovich betrays an attempt of making dual
prices more palatable to Marxist orthodoxy [Todd, 2002]

“I want to emphasize again that the greater part of
the problems of which I shall speak, relating to the
organization and planning of production, are
connected specifically with the Soviet system of
economy and in the majority of cases do not arise in
the economy of a capitalist society.”
[Kantorovich, 1939]
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Early development

The Simplex Method I

George Dantzig proposes the Simplex Method in 1947
[Dantzig, 2002]
Early works by Leontief, von Neumann and Koopsman directly
influenced the theoretical development of linear programming
[Dantzig, 2002]
From Dantzig’s point of view: Not just a qualitative tool in
the analysis of economic phenomena, but a method to
compute actual answers [Bixby, 2012]
Unfortunately, not all economists are keen of numbers, the
1975 Nobel Prize in Economics was awarded to Kantorovich
and Koopsman, ignoring Dantzig’s contribution
[Nobelprize.org, 2015]
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Early development

The Simplex Method II
First application to the solution of a non-trivial LP: 21x17
instance of Stigler Diet Problem (computation time was 120
man-days!) [Dantzig, 1963]
Orchard-Hays (1954) produces first successful LP software
Sparse matrix representation and product-form of the inverse
Largest problem solved: 26 x 71 solved in 8 hours [Bixby,
2002]
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Solving Larger Scale Problems

The Simplex Method I

Designed “to be computable”, developed side-by-side with
digital computers [Dantzig, 2002]
Large scale methods: special matrix, structures Dantzig-Wolfe
and Benders decomposition[Dantzig, 1955, Dantzig and
Wolfe, 1961, Benders, 1962]
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Solving Larger Scale Problems

The Simplex Method II
Familiar examples extracted from the original articles:
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Solving Larger Scale Problems

The Simplex Method III
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The Simplex Method

Solving Larger Scale Problems

The Simplex Method IV

Extensions to quadratic programming and linear
complementarity.
Large scale not in today’s sense. Then, 1000x2000 would be
the limit of tractability with methods that used special matrix
structures. Still, the methods survive, updated to advances in
computer technology, especially parallel architectures
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Solving Larger Scale Problems

The Simplex Method V
The common belief is that the Simplex Method is Exponential
behavior in theory and almost linear in practice
Sparse LU representation of the basis with
Bartel-Golub/Forrest-Tomlin/Fletcher-Matthews
update.[Forrest and Tomlin, 1972]
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Doubting the Simplex Method

Doubting the Simplex Method I

Even Dantzig had his doubts [Todd, 2002]:
“Luckily the particular geometry used in my thesis
was the one associated with the columns of the
matrix instead of its rows. This column geometry
gave me the insight which led me to believe that the
simplex method would be an efficient solution
technique. I earlier had rejected the method when I
viewed it in the row geometry because running
around the outside edges seemed so unpromising.”
[Dantzig, 1991]

Finite behavior was enough in early analysis of the algorithm
However ... It was not even finite!
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Doubting the Simplex Method

Doubting the Simplex Method II
Cycling is possible in degenerate LPs.
But it got fixed with Bland’s pivoting Rule [Bland, 1977]
Theory of computational complexity gets developed
Is linear programming in P?
Klee and Minty [1972] shows the simplex method with a
common pivot rule is of exponential complexity
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The Simplex method comes back

The Simplex method comes back I

Theory counters with bounds on the expected number of
pivot steps [Borgwardt, 1982]
The work of Karmarkar had stimulated a rebirth of interest in
LP, both on the theoretical and computation sides [Bixby,
2012]
Computational studies on problems with numbers of variables
ranging up to the millions also reaffirm confidence
More recent linear algebra improvements such as Markowitz
threshold and sparse partial pivoting [Bixby, 2002]
Modern implementation (XMP, OSL, CPLEX, Gurobi, Mosek,
Xpress) with power preprocessors,



Computational LP
The Simplex Method

The Simplex method comes back

The Simplex method comes back II
The Simplex method is also naturally suited for mixed integer
problem in Branch-and-bound and Branch-and-cut algorithms
[Bixby, 2002]
Remains a primary computational tool in linear and
mixed-integer programming (MIP)
Parallel implementations of the simplex method usually must
exploit special structures
A general approach hindered by the changing sparse pattern
of the basic matrix
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The Ellipsoid Method I

The Ellipsoid Method [Khachiyan, 1979]
Revolutionary for complexity theory without computational
impact
However brings back the idea of solving linear programs with
traditionally non-linear techniques
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Interior Point Methods I
Karmarkar’s algorithm [Karmarkar, 1984]

Projective algorithm with a potential function sets a lower
complexity for linear programming: O(n3.5L)
Claims of great performance gains for a dual-affine scaling
variant [Adler et al., 1989a]
Similar algorithm had gone unnoticed by LP researchers [Dikin,
1967]

Primal-Dual/Path Following methods
New wave of interest in linear programming reintroduces
path-following methods developed in the nonlinear context:
Logarithm Barrier Function [Fiacco and McCormick, 1990] and
Method of Centers [Huard, 1967]
Central trajectory methods with lower complexity O(n3L)
Primal/Dual infeasible methods become standard for
implementation, included in leading LP software.
[Shanno, 2012]
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A Personal Reminiscence

A Personal Reminiscence I

Initial contact with Karmarkar article
Narendra Karmarkar was a recent PHd graduate from UC
Berkeley, Computer Science department, working under
Richard Karp
Talk by Narendra Karmarkar at Evans Hall where he claimed a
modified algorithm was ”hundreds of times faster” than the
Simplex Method
Even featured on the first page of Sunday NY Times in
November 18, 1984! [Gleick, 1984]
”Breakthrough in Problems Solving” was the headline (N.B.
AT&T was known for its ability to place Bell Labs stories in
the science section of the NY Times)
But making it first page news was unheard
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A Personal Reminiscence

A Personal Reminiscence II
In Berkeley’s IEOR computer lab, I built a simple
implementation in APL of the original projective algorithm
confirmed the small number of iterations
Linear algebra infrastructure under APL did not allow for a
serious performance analysis
Ilan Adler arranged with Narendra Karmakar to collaborate in
a serious implementation to vouch for the speed claims
Mauricio Resende and myself ended up leading the effort
along with other students in Ilan Adler’s graduate seminar
[Adler et al., 1989b]
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A Personal Reminiscence

A Personal Reminiscence III
Contrary to other recollections [Gill et al., 2008], we were
never told or felt that any of the ideas in the algorithms were
proprietary by AT&T. There was however a self imposed
restriction to avoid any possible copyright infringement. Then,
we never saw nor asked for code that Karmarkar might have
written himself.
In retrospect, I feel that his comments in the early talks on
the speed of the algorithms were based on simple prototypes
that were not ready for sharing.
The ill feelings in initial presentations by Karmarkar [Shanno,
2012] were caused more from problem of personal style than
company policy.
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A Personal Reminiscence

A Personal Reminiscence IV
However, a very legitimate complain comes later with AT&T
trying to enforce patents on the Karmarkar’s algorithm and
the affine scaling interior point method [Karmarkar, 1988,
Vanderbei, 1988, 1989]
Eventualy AT&T’s Korbx system, an attempt to commercialize
interior point methods, failed, making this discussion mute.
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A Personal Reminiscence

A Personal Reminiscence
Library of Alexandria - Interior Point Wing
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A Personal Reminiscence

A Personal Reminiscence
Christiano Lyra knocks at my door selects a pile of papers and
runs to Krishna Copy Center
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A Personal Reminiscence

A Personal Reminiscence

Back at Unicamp brilliant student Aurélio Oliveira reads the
whole
lot, writes dissertation, articles etc ... Ans begets this workshop.
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Interior Point Methods

Dual-Affine Scaling Algorithm

Dual Affine Algorithm

c, x n-vectors; A m × n matrix; b, y m-vectors

max {b>y | A>y ≤ c}

Add slack variables

max {b>y | A>y + v = c, v ≥ 0}

Scaling transformation

v̂ = D−1
v v where Dv = diag(vk

1 , . . . , vk
m)

Projected gradient as search direction

hy = (AD−2
v A>)−1b and hv = −A>hy
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Dual-Affine Scaling Algorithm

Affine-Dual Algorithm II

1 procedure dualAffine (A, b, c, y0, stopping criterion, γ)
2 k := 0;
3 do stopping criterion not satisfied →
4 vk := c − A>yk ;
5 Dv := diag(vk

1 , . . . , vk
m);

6 hy := (AD−2
v A>)−1b;

7 hv := −A>hy ;
8 if hv ≥ 0→ return fi;
9 α := γ ×min{−vk

i /(hv )i | (hv )i < 0, i = 1, . . . ,m};
10 yk+1 := yk + αhy ;
11 k := k + 1;
12 od
13 end dualAffine
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Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities I

Formulation:
Upper bounds for a subset of variables
c, x , s, z are n-vectors
ub, xb, sb, wb nb-vectors – xn, sn nn-vectors
A m × n matrix – b, y m-vectors

Add slack variables

min {c>x | Ax = b, xb + sb = ub, x ≥ 0, sb ≥ 0}

max {b>y − u>b wb | A>b y − wb + zb = cb,

A>n y + zn = cn, wb ≥ 0, z ≥ 0}
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Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities II
X = diag(x), S = diag(s), W = diag(w), Z = diag(z)
µ Central trajectory parameter
Karush-Kuhn-Tucker conditions:

Ax = b
xb + sb = ub

A>b y − wb + zb = cb

A>n y + zn = cn

XZe = µe
SbWbe = µe

x , sb,wb, z > 0
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Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities III
System of equations with primal and dual infeasibilities

A∆xk = −(Axk − b) = r k
p

∆xk
b + ∆sk

b = −(xk
b + sk

b − ub) = r k
u

A>b ∆yk −∆wk
b + ∆zk

b = −(A>b yk + zk
b − wk

b − cb) = (r k
d )b = 0

A>n ∆yk + ∆zk
n = −(A>n yk + zk

n − cn) = (r k
d )n

Z k∆xk + X k∆zk = −(X kZ ke − µke) = r k
xz

W k
b ∆sk

b + Sk
b ∆wk

b = −(W k
b Sk

b e − µke) = (r k
sw )b
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Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities IV
Normal Equations

AΘkA>∆yk = b̄

where

Θk =
[

(Z k
b (X k

b )−1 + W k
b (Sk

b )−1)−1 0
0 (Z k

n )−1X k
n

]

b̄ = r k
p + AbΘk

b((r k
d )b + (Sk

b )−1(r k
sw −Wbr k

u )− (X k
b )−1r k

xz )
+ AnΘk

n((r k
d )n − (X k

n )−1r k
xz )
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Primal-Dual Algorithm with infeasibilities

Primal-Dual Algorithm with infeasibilities V
Other search direction computed without substantial
computational effort

∆xk
b =Θk

bA>b ∆yk −Θk
b((r k

d )b+
(Sk

b )−1(r k
sw −Wbr k

u )− (X k
b )−1(r k

xz )b)
∆xk

n =Θk
nA>n ∆yk −Θk

n((r k
d )n − (X k

n )−1(r k
xz )n)

∆sk
b =r k

u −∆xk
b

∆zk =(X k)−1(rxz − Z k∆xk)
∆wk

b =A>b ∆yk + ∆zk
b
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Parallelization of an Interior Point Method

Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization I

Main computational step common to all variants is the
solutions of a system of normal equations

AΘkA>∆yk = b̄

Examining an implementation in Matlab/Octave, potentially
computationally expensive steps:
Computing system matrix

B = A∗ sparse ( diag ( d ) )∗A ’ ;

Custom parallel sparse linear algebra
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Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization II

Example: BandM from the Netlib collection
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Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization III

Order for sparsity
o r d e r i n g = symamd (B ) ;

Reordering for sparsity: Matrix AA> and Cholesky factors
without ordering [Adler et al., 1989a]



Computational LP
Parallelization of an Interior Point Method

Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization IV

Matrix AA> and Cholesky factors after minimum degree
ordering
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Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization V

Reordering rows of A to avoid fill-in
Optimal ordering is NP-Complete [Yannakakis, 1981]
Linear solvers compute the ordering during the Analyse step,
based solely on the matrix sparsity pattern
Performed only once in interior point algorithms, sparsity
pattern are identical for all iterations
Parallel/Distributed MPI based implementations available:
ParMETIS

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization VI

Direct Cholesky factorization

R = chol (B( o r d e r i n g , o r d e r i n g ) ) ;

Repeated at every iteration, consumes most of the
computational effort
For larger problems: Main parallelization target
Chart displaying the portion of the algorithm running time for
Netlib problems, suggesting a increase with size
Available Parallel/Distributed implementations: MUMPS
[Amestoy et al., 2000] for distributed memory architectures
and PARDISO for shared memory

http://graal.ens-lyon.fr/MUMPS/
http://www.pardiso-project.org/
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Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization VII

Triangular Solution for rhs

dy ( o r d e r i n g ) = R\(R’\ bbar ( o r d e r i n g ) ) ;

General sparse linear algebra parallelization
In distributed implementations, parallelization implied by
Factorization step
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Direct Factorization Methods

Parallelization opportunities in Interior Point
Direct Factorization VIII
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Parallelization strategies

Parallelization strategies
MPI: Message Passing/Distributed Memory

Standard for high-performance computing
Processors operate with private memory spaces, sharing results
of only through point-to-point or collective communication
Goals are high performance, scalability and portability
Bindings for Fortran and C/C++
Target architectures are both high performance computer
clusters tightly linked with fast switched interconnects and
grids of loosely-coupled systems

Shared memory multiprocessing
Multiple computing threads operate in shared memory space
Programming standards: OpenMP and Pthreads (Posix
threads)
Suited for multi-core processor architectures

Hybrid model of parallel programming use multi-core MPI
nodes executing shared memory threads
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Experimenting with MUMPS

Experimenting with MUMPS

Multifrontal Massively Parallel Solver MUMPS [Amestoy
et al., 2000] for distributed memory architectures
Multifrontal methods first build an assembly tree
At each node, a dense submatrix (frontal matrix) is assembled
using data from the original matrix and from the children of
the node
Main source of parallelism consists in simultaneously assigning
same level frontal matrices onto separate processors
MUMPS uses standard linear algebra libraries BLAS, BLACS,
ScaLAPACK
BLAS functions can use shared memory parallelism, depending
on implementation
Experiments with Netlib collection unsuccessful due to small
size, but suggest better performance as problems grow

http://graal.ens-lyon.fr/MUMPS/
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Experimenting with MUMPS

Multifrontal assembly trees for two orderings
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Experimenting with MUMPS

Experiments with Netlib problems
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Case study

Power system expansion planning model

Linear relaxation of mixed integer planning model for the
expansion of a combined hydro and thermal power system
Formulated with Optgen c© modeling tool, developed by PSR
Problem instance generated with Brazilian system of 280
hydro and 120 thermal plants
LP size: 840285 columns, 598066 rows and 2462627 nonzeros
entries
Interior Point linear system: 360455 rows and 27390204
nonzeros

http://www.psr-inc.com.br
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Case study

Case Study Experiment

Experiment solves one typical system from an interior point
iteration
SGI Altix ICE 8200 with 64 quad-Core Intel Xeon CPU and
512 Gbytes of distributed RAM, using a Infiniband
interconnect
Software infrastructure: MUMPS 4.8.3 with BLAS, BLACS,
ScaLAPACK provided by Intel MKL 10.1
MUMPS is successful in low-scale parallelization
Times for the Analyze stage comparable
Total computation is dominated by matrix-matrix
multiplication
Shared memory parallelism using OpenMP in the BLAS and
Lapack routines has little effect in this architecture
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Case study

MUMPS Speedup
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Conclusion and future work

Conclusion and future work

This experiment with parallelization was class project at
COPPE-UFRJ by Luiz Carlos da Costa, Jr. and Fernanda
Thomé [Maculan et al., 2008]
Large-scale problems using implementations with direct
factorization can profit from parallelization, but less than
expected
Parallelization still an art form: No assurance of performance,
too dependent on the infrastructure and algorithms
MUMPS and other MPI-based tools are designed for high
performance clusters
Multi-core workstations are a better suited for shared memory
parallelization
Other sources of parallelism must be addressed
Experiments with iterative methods for solving interior point
linear systems
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Some ideas for future development
Identifying an optimal basis

Most modern optimization software packages include an
Interior Point implementation. However, they still rely on a
cumbersome crossover step to produce a Simplex-like optimal
solution
In network flow problems it it possible to guess and test the
optimal basis. More interestingly, the guessed basis is used to
build a preconditioner in iterative solutions of the main system
of equations Resende and Veiga [1993]
Can this be generalized for LP and separating preconditioners?

Parallel implementations
Continued increase in computer processing power depends on
multicore and distributed architectures
Successful parallelization using direct factorization only for
special structure problems [Gondzio and Grothey, 2006]
Using pure iterative methods would be instantly parallelizable
Design of preconditioners must also take parallel architectures
into consideration. Usually, they must yeald systems easy to
solve (diogonal, triangular) and parallelize.



Computational LP
References

References I
Ilan Adler, Narendra Karmarkar, Mauricio G. C. Resende, and Geraldo Veiga. Data Structures and Programming

Techniques for the Implementation of Karmarkar’s Algorithm. ORSA Journal on Computing, 1(2):84–106, May
1989a. ISSN 0899-1499. doi: 10.1287/ijoc.1.2.84. URL
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.2.84.

Ilan Adler, Mauricio G. C. Resende, Geraldo Veiga, and Narendra Karmarkar. An implementation of Karmarkar’s
algorithm for linear programming. Mathematical Programming, 44(1-3):297–335, May 1989b. ISSN
0025-5610, 1436-4646. doi: 10.1007/BF01587095. URL
http://link.springer.com/article/10.1007/BF01587095. An errata correcting the description of the
power series algorithm was published in Mathematical Programming 50 (1991), 415.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric
solvers. Computer Methods in Applied Mechanics and Engineering, 184:501–520, 2000. doi:
10.1016/S0045-7825(99)00242-X.

Jacques F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
mathematik, 4(1):238–252, 1962. doi: 10.1007/BF01386316. URL
http://www.springerlink.com/index/g203830n1gm58w73.pdf.

Robert E. Bixby. Solving Real-World Linear Programs: A Decade and More of Progress. Operations Research, 50
(1):3–15, February 2002. ISSN 0030-364X. doi: 10.1287/opre.50.1.3.17780. URL
http://pubsonline.informs.org/doi/abs/10.1287/opre.50.1.3.17780.

Robert E. Bixby. A brief history of linear and mixed-integer programming computation. Documenta Mathematica,
pages 107–121, 2012. URL http://www.emis.ams.org/journals/DMJDMV/vol-ismp/25_bixby-robert.pdf.

http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.2.84
http://link.springer.com/article/10.1007/BF01587095
http://www.springerlink.com/index/g203830n1gm58w73.pdf
http://pubsonline.informs.org/doi/abs/10.1287/opre.50.1.3.17780
http://www.emis.ams.org/journals/DMJDMV/vol-ismp/25_bixby-robert.pdf


Computational LP
References

References II
Robert G. Bland. New Finite Pivoting Rules for the Simplex Method. Mathematics of Operations Research, 2(2):

103–107, May 1977. ISSN 0364-765X. doi: 10.1287/moor.2.2.103. URL
http://pubsonline.informs.org/doi/abs/10.1287/moor.2.2.103.

Dr K.-H. Borgwardt. The Average number of pivot steps required by the Simplex-Method is polynomial. Zeitschrift
für Operations Research, 26(1):157–177, December 1982. ISSN 0340-9422, 1432-5217. doi:
10.1007/BF01917108. URL http://link.springer.com/article/10.1007/BF01917108.

George B. Dantzig. Upper Bounds, Secondary Constraints, and Block Triangularity in Linear Programming.
Econometrica, 23(2):174–183, April 1955. ISSN 0012-9682. doi: 10.2307/1907876. URL
http://www.jstor.org/stable/1907876.

George B. Dantzig. Linear Programming. In Jan Karel Lenstra, Alexander H. G. Rinnoy Kan, and (eds)
Alexander Schrijver, editors, History of Mathematical Programming, a Collection of Personal Reminiscences.
Elsevier Science Publishers B. V., Amsterdam, 1991. ISBN 0-444-88818-7.

George B. Dantzig. Linear Programming. Operations Research, 50(1):42–47, February 2002. ISSN 0030-364X. doi:
10.1287/opre.50.1.42.17798. URL
http://pubsonline.informs.org/doi/abs/10.1287/opre.50.1.42.17798.

George B. Dantzig and Philip Wolfe. The Decomposition Algorithm for Linear Programs. Econometrica, 29(4):
767–778, October 1961. ISSN 0012-9682. doi: 10.2307/1911818. URL
http://www.jstor.org/stable/1911818.

George Bernard Dantzig. Linear Programming and Extensions. Princeton University Press, 1963. ISBN 0691059136.
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